Orthogonal Series Density Estimation and the Kernel Eigenvalue Problem

نویسنده

  • Mark A. Girolami
چکیده

Kernel principal component analysis has been introduced as a method of extracting a set of orthonormal nonlinear features from multivariate data, and many impressive applications are being reported within the literature. This article presents the view that the eigenvalue decomposition of a kernel matrix can also provide the discrete expansion coefficients required for a nonparametric orthogonal series density estimator. In addition to providing novel insights into nonparametric density estimation, this article provides an intuitively appealing interpretation for the nonlinear features extracted from data using kernel principal component analysis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of the Gamma kernel and the orthogonal series methods of density estimation

The standard kernel density estimator suffers from a boundary bias issue for probability density function of distributions on the positive real line. The Gamma kernel estimators and orthogonal series estimators are two alternatives which are free of boundary bias. In this paper, a simulation study is conducted to compare small-sample performance of the Gamma kernel estimators and the orthog...

متن کامل

A New Adaptive Density Estimator for Particle-Tracing Radiosity

In particle-tracing radiosity algorithms, energy-carrying particles are traced through an environment for simulating global illumination. Illumination on a surface is reconstructed from particle “hit points” on the surface, which is a density estimation problem [ I l l . Several methods can be used to solve this problem, such as the adaptive meshing method [14], the kernel method [Is], and the ...

متن کامل

@bullet a Comparison of Cross-validation Techniques in Density Estimation! (comparison in Density Estimation)

• • ~~~~~~ In the setting of nonparametric multivariate density estimation, theorems are established which allow a comparison of the Kullback-Leibler and the Least Squares cross-validation methods of smoothing parameter selection. The family of delta sequence estimators (including kernel, orthogonal series, histogram and histospline estimators) is considered. These theorems also show that eithe...

متن کامل

Eigenfunction Expansions for Second-Order Boundary Value Problems with Separated Boundary Conditions

In this paper, we investigate some properties of eigenvalues and eigenfunctions of boundary value problems with separated boundary conditions. Also, we obtain formal series solutions for some partial differential equations associated with the second order differential equation, and study necessary and sufficient conditions for the negative and positive eigenvalues of the boundary value problem....

متن کامل

A Berry-Esseen Type Bound for a Smoothed Version of Grenander Estimator

In various statistical model, such as density estimation and estimation of regression curves or hazard rates, monotonicity constraints can arise naturally. A frequently encountered problem in nonparametric statistics is to estimate a monotone density function f on a compact interval. A known estimator for density function of f under the restriction that f is decreasing, is Grenander estimator, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neural computation

دوره 14 3  شماره 

صفحات  -

تاریخ انتشار 2002